71 research outputs found

    Modeling the wind circulation around mills with a Lagrangian stochastic approach

    Get PDF
    This work aims at introducing model methodology and numerical studies related to a Lagrangian stochastic approach applied to the computation of the wind circulation around mills. We adapt the Lagrangian stochastic downscaling method that we have introduced in [3] and [4] to the atmospheric boundary layer and we introduce here a Lagrangian version of the actuator disc methods to take account of the mills. We present our numerical method and numerical experiments in the case of non rotating and rotating actuator disc models. We also present some features of our numerical method, in particular the computation of the probability distribution of the wind in the wake zone, as a byproduct of the fluid particle model and the associated PDF method

    Quantum probes for universal gravity corrections

    Full text link
    We address estimation of the minimum length arising from gravitational theories. In particular, we provide bounds on precision and assess the use of quantum probes to enhance the estimation performances. At first, we review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system, which is proportional to a parameter depending on the minimum length. We then systematically study the effects of this perturbation on different state preparations for several 1-dimensional systems, and we evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure. Eventually, we investigate the role of dimensionality by analysing the use of two-dimensional square well and harmonic oscillator systems to probe the minimal length. Our results show that quantum probes are convenient resources, providing potential enhancement in precision. Additionally, our results provide a set of guidelines to design possible future experiments to detect minimal length.Comment: 11 pages, 4 figure

    Railway overhead contact wire monitoring system by means of FBG sensors

    Get PDF
    Safety of infrastructures represents one of the most significant concerns for governments and service providers to preserve people's well-being. One of the main ways to keep in safe facilities (buildings, bridges, railways, etc.) involves the use of monitoring sensor systems in charge of measuring critical operating conditions. Those measurements together with periodical maintenance, contribute to minimize potential risks that the infrastructure faces. The paper aims at designing, developing, and testing a monitoring system for mechanical stresses acting on the overhead contact wire (OCW) to ensure the operational safety of the railway network. In this regard, the paper proposes two Fiber Bragg Grating (FBG) sensors-based solutions, relying on the ability of these sensors to allow real-time and continuous data acquisition. The first one consists in a polyimide-coated sensor bonded on an OCW clamp, the second one is a copper-coated sensor hanging between the two separated halves of an OCW clamp. Significant results have been obtained mechanically testing both solutions, trying to simulate the operative conditions

    Biological interactions and simulated climate change modulates the ecophysiological performance of Colobanthus quitensis in the Antarctic ecosystem

    Get PDF
    Most climate and environmental change models predict significant increases in temperature and precipitation by the end of the 21st Century, for which the current functional output of certain symbioses may also be altered. In this context we address the following questions: 1) How the expected changes in abiotic factors (temperature, and water) differentially affect the ecophysiological performance of the plant Colobanthus quitensis? and 2) Will this environmental change indirectly affect C. quitensis photochemical performance and biomass accumulation by modifying its association with fungal endophytes? Plants of C. quitensis from King George Island in the South Shetland archipelago (62°09′ S), and Lagotellerie Island in the Antarctic Peninsula (65°53′ S) were put under simulated abiotic conditions in growth chambers following predictive models of global climate change (GCC). The indirect effect of GCC on the interaction between C. quitensis and fungal endophytes was assessed in a field experiment carried out in the Antarctica, in which we eliminated endophytes under contemporary conditions and applied experimental watering to simulate increased precipitation input. We measured four proxies of plant performance. First, we found that warming (+W) significantly increased plant performance, however its effect tended to be less than watering (+W) and combined warming and watering (+T°+W). Second, the presence of fungal endophytes improved plant performance, and its effect was significantly decreased under experimental watering. Our results indicate that both biotic and abiotic factors affect ecophysiological performance, and the directions of these influences will change with climate change. Our findings provide valuable information that will help to predict future population spread and evolution through using ecological niche models under different climatic scenarios

    B Cells versus T Cells in the Tumor Microenvironment of Malignant Lymphomas. Are the Lymphocytes Playing the Roles of Muhammad Ali versus George Foreman in Zaire 1974?

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadMalignant lymphomas are a heterogeneous group of malignancies that develop both in nodal and extranodal sites. The different tissues involved and the highly variable clinicopathological characteristics are linked to the association between the lymphoid neoplastic cells and the tissues they infiltrate. The immune system has developed mechanisms to protect the normal tissue from malignant growth. In this review, we aim to explain how T lymphocyte-driven control is linked to tumor development and describe the tumor-suppressive components of the resistant framework. This manuscript brings forward a new insight with regard to intercellular and intracellular signaling, the immune microenvironment, the impact of therapy, and its predictive implications. A better understanding of the key components of the lymphoma environment is important to properly assess the role of both B and T lymphocytes, as well as their interplay, just as two legendary boxers face each other in a heavyweight title final, as was the case of Ali versus Foreman. Keywords: B lymphocytes; T lymphocytes; lymphocyte inter-talk; malignant lymphomas; tumor microenvironment.Iuliu Hatieganu University, School of Doctoral Studies RomanianMinistry of Research and Innovation, CCCDI-UEFISCDI within PNCDI III European Economic Spac

    B Cells versus T Cells in the Tumor Microenvironment of Malignant Lymphomas. Are the Lymphocytes Playing the Roles of Muhammad Ali versus George Foreman in Zaire 1974?

    Get PDF
    Publisher's version (útgefin grein)Malignant lymphomas are a heterogeneous group of malignancies that develop both in nodal and extranodal sites. The different tissues involved and the highly variable clinicopathological characteristics are linked to the association between the lymphoid neoplastic cells and the tissues they infiltrate. The immune system has developed mechanisms to protect the normal tissue from malignant growth. In this review, we aim to explain how T lymphocyte-driven control is linked to tumor development and describe the tumor-suppressive components of the resistant framework. This manuscript brings forward a new insight with regard to intercellular and intracellular signaling, the immune microenvironment, the impact of therapy, and its predictive implications. A better understanding of the key components of the lymphoma environment is important to properly assess the role of both B and T lymphocytes, as well as their interplay, just as two legendary boxers face each other in a heavyweight title final, as was the case of Ali versus Foreman.The research on the lymphoma microenvironment was funded by an internal grant of the Iuliu Hatieganu University, School of Doctoral Studies (PCD 2018-2021) (Minodora Desmirean), under the frame of European Social Found, Human Capital Operational Program 2014-2020, project no. POCU/380/6/13/125171 (Minodora Desmirean) and the Romanian Ministry of Research and Innovation, CCCDI-UEFISCDI, Project No. PN-III-P4-ID-PCCF-2016-0112 within PNCDI III, by an award for Young Research Teams 2020-2022 (Grant No. PN-III-P1-1.1-TE-2019-0271) (both Ciprian Tomuleasa) as well as by an international collaborative grant of the European Economic Space between Romania and Iceland 2020-2022 (Grant No. 19-COP-0031) (Ciprian Tomuleasa)."Peer Reviewed

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore